skip to main content


Search for: All records

Creators/Authors contains: "Leyk, S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    The collection, processing, and analysis of remote sensing data since the early 1970s has rapidly improved our understanding of change on the Earth's surface. While satellite-based Earth observation has proven to be of vast scientific value, these data are typically confined to recent decades of observation and often lack important thematic detail. Here, we advance in this arena by constructing new spatially explicit settlement data for the United States that extend back to the early 19th century and are consistently enumerated at fine spatial and temporal granularity (i.e. 250 m spatial and 5-year temporal resolution). We create these time series using a large, novel building-stock database to extract and map retrospective, fine-grained spatial distributions of built-up properties in the conterminous United States from 1810 to 2015. From our data extraction, we analyse and publish a series of gridded geospatial datasets that enable novel retrospective historical analysis of the built environment at an unprecedented spatial and temporal resolution. The datasets are part of the Historical Settlement Data Compilation for the United States (https://dataverse.harvard.edu/dataverse/hisdacus, last access: 25 January 2021) and are available at https://doi.org/10.7910/DVN/YSWMDR (Uhl and Leyk, 2020a), https://doi.org/10.7910/DVN/SJ213V (Uhl and Leyk, 2020b), and https://doi.org/10.7910/DVN/J6CYUJ (Uhl and Leyk, 2020c). 
    more » « less
  2. null (Ed.)
    Urban tree cover provides benefits to human health and well-being, but previous studies suggest that tree cover is often inequitably distributed. Here, we use National Agriculture Imagery Program digital ortho photographs to survey the tree cover inequality for Census blocks in US large urbanized areas, home to 167 million people across 5,723 municipalities and other Census-designated places. We compared tree cover to summer land surface temperature, as measured using Landsat imagery. In 92% of the urbanized areas surveyed, low-income blocks have less tree cover than high-income blocks. On average, low-income blocks have 15.2% less tree cover and are 1.5⁰C hotter than high-income blocks. The greatest difference between low- and high-income blocks was found in urbanized areas in the Northeast of the United States, where low-income blocks in some urbanized areas have 30% less tree cover and are 4.0⁰C hotter. Even after controlling for population density and built-up intensity, the positive association between income and tree cover is significant, as is the positive association between proportion non-Hispanic white and tree cover. We estimate, after controlling for population density, that low-income blocks have 62 million fewer trees than high-income blocks, equal to a compensatory value of $56 billion ($1,349/person). An investment in tree planting and natural regeneration of $17.6 billion would be needed to close the tree cover disparity, benefitting 42 million people in low-income blocks. 
    more » « less
  3. null (Ed.)
  4. null (Ed.)
    With climate-driven increases in wildfires in the western U.S., it is imperative to understand how the risk to homes is also changing nationwide. Here, we quantify the number of homes threatened, suppression costs, and ignition sources for 1.6 million wildfires in the United States (U.S.; 1992–2015). Human-caused wildfires accounted for 97% of the residential homes threatened (within 1 km of a wildfire) and nearly a third of suppression costs. This study illustrates how the wildland-urban interface (WUI), which accounts for only a small portion of U.S. land area (10%), acts as a major source of fires, almost exclusively human-started. Cumulatively (1992–2015), just over one million homes were within human-caused wildfire perimeters in the WUI, where communities are built within flammable vegetation. An additional 58.8 million homes were within one kilometer across the 24-year record. On an annual basis in the WUI (1999–2014), an average of 2.5 million homes (2.2–2.8 million, 95% confidence interval) were threatened by human-started wildfires (within the perimeter and up to 1-km away). The number of residential homes in the WUI grew by 32 million from 1990–2015. The convergence of warmer, drier conditions and greater development into flammable landscapes is leaving many communities vulnerable to human-caused wildfires. These areas are a high priority for policy and management efforts that aim to reduce human ignitions and promote resilience to future fires, particularly as the number of residential homes in the WUI grew across this record and are expected to continue to grow in coming years. 
    more » « less